Turbulent Marginal Separation and the Turbulent Goldstein Problem
نویسندگان
چکیده
A new rational theory of incompressible turbulent boundary layer flows having a large velocity defect is presented on basis of the Reynolds-averaged Navier–Stokes equations in the limit of infinite Reynolds number. This wake-type formulation allows for, among others, the prediction of singular solutions of the boundary layer equations under the action of a suitably controlled adverse pressure gradient which are associated with the onset of marginally separated flows. Increasing the pressure gradient locally then transforms the marginal-separation singularity into a weak Goldstein-type singularity occurring in the slip velocity at the base of the outer wake layer. Interestingly, this behavior is seen to be closely related to (but differing in detail from) the counterpart of laminar marginal separation where the skin friction replaces the surface slip velocity. Most important, adopting the concept of locally interacting boundary layers gives rise to a closure-free and uniformly valid asymptotic description of boundary layers which exhibit small closed reverse-flow regimes. Numerical solutions of the underlying triple-deck problem are discussed.
منابع مشابه
3D Simulation of the Effects of the Plasma Actuator on the Unsteady, Turbulent and Developing Flow within a Circular Duct
The objective of current paper is 3D simulation of turbulent, developing flow and unsteady within a circular duct in presence of the body force vector persuaded by Dielectric barrier discharge (DBD) plasma actuator inside the surface of geometry for the first time. This article aims at investigating of applying plasma actuator to control separation with special arrangement of electrodes. For th...
متن کاملNumerical Simulation of Separation Bubble on Elliptic Cylinders Using Three-equation k-? Turbulence Model
Occurrence of laminar separation bubbles on solid walls of an elliptic cylinder has been simulated using a recently developed transitional model for boundary layer flows. Computational method is based on the solution of the Reynolds averaged Navier-Stokes (RANS) equations and the eddy-viscosity concept. Transitional model tries to simulate streamwise fluctuations, induced by freestream turbulen...
متن کاملSteady Flow Through Modeled Glottal Constriction
The airflow in the modeled glottal constriction was simulated by the solutions of the Navier-Stokes equations for laminar flow, and the corresponding Reynolds equations for turbulent flow in generalized, nonorthogonal coordinates using a numerical method. A two-dimensional model of laryngeal flow is considered and aerodynamic properties are calculated for both laminar and turbulent steady flows...
متن کاملOn turbulent marginal boundary layer separation: how the half-power law supersedes the logarithmic law of the wall
As the authors have demonstrated recently, application of the method of matched asymptotic expansions allows for a self-consistent description of a Turbulent Boundary Layer (TBL) under the action of an adverse pressure gradient, where the latter is controlled such that it may undergo marginal separation. In that new theory, the basic limit process considered is provided by the experimentally ob...
متن کاملSimultaneous estimation of heat fluxes applied to the wall of a channel with turbulent flow using inverse analysis
The main purpose of this study is to estimate the step heat fluxes applied to the wall of a two-dimensional symmetric channel with turbulent flow. For inverse analysis, conjugate gradient method with adjoint problem is used. In order to calculate the flow field, two equation model is used. In this study, adjoint problem is developed to conduct an inverse analysis of heat transfer in a channel...
متن کامل